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Simple driven maps as sensitive devices
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Sensitive dependence of nonlinear systems on initial conditions or parameters can be useful in applications.
We propose in this paper that bubbling behavior in simple driven symmetrical maps may be used as a working
principle of sensitive devices. The system is stable when there is no input and displays bursting behavior when
there is small input. The symmetrical property of the bursting pattern is very sensitive to the bias of the noisy
inputs, which makes the system promising for detecting weak signals among noisy environment.
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A common property of many nonlinear systems is theirperturbations. As pointed out by the authors in Rél, in
sensitive dependence on initial conditions or parameterghe neighborhood of the bounddaky of synchronization, one
This effect can be useful in applications. For example, theean expect the highest sensitivity of the system.
sensitivity of a chaotic system can be used to control its state We would like to highlight the connection of the working
to unstable periodic orbits embedded ifilif, in targeting the  principle of the above device to the phenomenoattfactor
state of the system to desired points in the state sgcéo  bubblingstudied recently7—10. Whenk is just beyond the
control the system to follow a desired goal dynamics in ordethresholdk., the synchronization manifold is transversely
to synchronize with another systdB] or to allow a message stable. However, there still exist some invariant sets, such as
being encoded in a chaotic series for the purpose of secuttee unstable periodic orbits embedded in the synchronization
communication4], only by small modifications of the pa- manifold, which are transversely unstable. As a consequence,
rameters or state of the chaotic system. The capability o$mall perturbations in the systems which destroy its synchro-
achieving quite different behavior by applying only small nization manifold will result in large intermittent bursts from
perturbations improves greatly the flexibility of a system tothe synchronization manifold, no matter how small the per-
be used in various applications. turbations ard8]. This is the origin of the sensitivity of the

By definition, sensitivity is referred to as the growth of above system. The difficulties of application of the system
small perturbations to the system. So, naively, sensitivity ofor sensor devices lie in practical implementations. Just like
nonlinear systems can be used to design sensor devicesdditive perturbations, any parameter mismatches between
Many systems possess a period-doubling bifurcation whethe systems can also lead to intermittent bursts. Parameter
some parameter is varied. Near the onset of a periodmismatches are inevitable in experiment implementations.
doubling bifurcation, any dynamical system can be used tdhis is the reason that intermittent desynchronization was
amplify perturbations near half the fundamental frequencyobserved beyond the threshold of synchronization in many
[5]. One disadvantage associated with the application of suchxperiments of synchronization between well matched elec-
parameter sensitivity for sensor device purpose is that theical circuits[7—10]. This effect imposes great difficulties in
control parameter of the system must be located extremelthe experimental implementation of the above sensor de-
close to the critical value of the bifurcation. vices, because inevitable parameter mismatches lead to large

Recently, Bhme and Schwarz proposed to use two iden-output even fors;,=0. The above devices can work only if
tical chaotic systems to construct sensitive devi@s In  the two systems ardeally identical] which is extremely
particular, they employed the following symmetrically difficult to realize. On the other hand, small external noise

coupled chaotic systems: can also result in large bursts wh&p, =0, which makes it
) very difficult to tell a signal from noise which is always
x=f(x)—k(x—y)+Sin, (1)  present in the practical environment.
To avoid the above difficulties, we propose in the follow-
y="F(y)+k(X—y) =S, (2)  ing to use simple driven systems as sensor devices. Attractor

bubbling and on-off intermittency11,12 are common be-
named chaotic bridge as a sensor devig.represents a haviors that occur in coupled nonlinear systems which pos-
constant input to be sensed. The coupling dais chosen sess an invariant manifold. They can be achieved in very
near the threshol#, of synchronization, so that fas,=0,  simple parametrically driven one-dimensional map3]
the coupled systems are in synchronization state, and the
outputs,,=||x—y||=0; while for s;,# 0, the symmetry of
the chaotic bridge is broken, and it may have a large output
at some moment. Since the synchronization manifold is
transversely stable fax,, =0, there must exist local instabili- wheref(0)=0, df(y)/dy|,# 0, andz,=ax,>0 is a random
ties in the system in order to obtain amplification of smallor chaotic driving signal with density function, anda is a

Ynr1=2Znf(Yn), 3
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FIG. 1. The piecewise linear maf{y). Herec,=1 andc, FIG. 3. An illustration of the output process of the sensitive
=2. system ata=2.6. The constant input ip=10"%, and is switched

on and off alternately for every 500 iterations, as shown by the

parameter. For the purpose of the application of the systenfiashed lines.
as sensitive devices, we require the maps to have odd sym-

metry, i.e.,f(—y)=—1(y). are small perturbations. In this paper, we are not considering
The stability of the invariant manifolgg=0 is governed the on-off intermittency behavior wita=a,. For the pur-
by the linear equation pose of sensor purpose, we employ the bubbling behavior

with a<a.. The sensor system reads as

Yn+1=ZnYn, (4)
Ynt1=Znf(Yn) +Sin, (6)

which describes the evolution of small perturbations trans-
verse to the invariant ling=0. Heredf(y)/dy|, is absorbed
into the parametea. The transverse Lyapunov exponanof
the invariant manifold defined as

and s, =Yy. When there is no input, i.es;,=0,y=0 is a
stable solution, and the outpsy,;=0. Since the critical pa-
rametera, and the evolution of small perturbations are inde-
pendent of the form of the nonlinearity, one can choose a
1 N map which is simple for implementation. For example, we
A= lim — 2 Inz,=(Inz) (5) employ a piecewise linear map
N—oo n=1

C1
c (=c1—Cy—y), Y<—Cy,
determines the stability of the invariant manifold. The criti- 2

cal pointa, at whichA =0 is the onset point of on-off inter- fiy)y=¢ ¥ lyl=<ci, 7)
mittency[12]. For z, being a uniform random driving signal ¢
on (0a), p,=1/a, and({Inz)=Ina—1=0 givesa.=e. Just C—(C1+Cz_y), y=>Cy,

2

above the onset poind=a., the random driven system dis-
plays universal features of on-off intermittency behavior,

Whlch are unaffec_ted b_y the form of the confining nonlmear-wr1erecl andc, are two parameters, as shown in Fig. 1.
ity [12]. The nonlinearity of the system serves to bound or ¢ 4 o0 is 1o input,s,, =0, staring from a small initial
reject the dynamics back towards small valuesyodfter ..o Yo=D, We hé\}gy =’z Zo e -2gp=k.p. The
bursts. Fom belowa,, the invariant manifolg/=0 is stable, average order of the factrgk n;\lhiré;h can be drt]afined as
but the stability is quite weak @& is neara. . Attractor bub- (Ink,), decreases linearly wit?{ as
bling occurs in the system when there are inputs of pertur- '
bations such as noise.

For a sensitive device, it should be stable when there is no

\

input, and is expected to produce large outputs when there (Inkp)=n(Inz)=n(Ina—1). 8
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FIG. 2. {Ink,), the average order df,, as a function ofn. It FIG. 4. Numerically evaluated distribution bf The parameters

decreases linearly for the case without infribt a) and increases of the plots are(a) a=2.5,p=10"3, (b) a=2.5,p=10"%, and(c)
for the case with inpugplot b). a=2.6,p=10"4
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FIG. 5. (a) Average value oN as a function ofa with p=10"3, and(b) as a function op with a=2.6.

P(N)=Prol{ NIy <ciNyn=cy). (1D)
Now, suppose there is a small constant inggit p, starting
from y,=0, the evolution of the output reads as By defining the evenEy=N!_,y;<c,; and the correspond-
ing probability A y=Prob(Ey), it follows that

y1=(Zo+1)p=Kkip,
Y2=(2129+ 23+ 1)p=Kkzp, P(N)=AnN—An-1,

which is a function of botta andp. In principle, A\ can be
evaluated by the joint densitp(K) of kq,k,, ... Ky,

Yn=(2Zp—1---Zot - +2,_22,_1tZ,_1+1)p=kyp, o namely,
i ¢(K):P(ZO)P(21|)J| p(Zn-1)
n+1_ ky—1 ky—1
max|yn|)=[p|(1+a+---a")=|p| ——7—=c1, ) p(kl—l)p(k—l)-up(m)
or kika- - -Kn-1 ’

whereJ is the Jacobian of the transformation betwég's

n=nc=int{in[c,(a—1)/|p|+1)/Ina}-1, andz’s defined in Eq(9). Specifically, one has

where infx] is the interger part of a real numbear The b b ky—1\dky_1
average order ok, {Ink,), cannot be obtained analytically Asz def p( )— .
1 (ky—1)/a Kno1/ Kn-1

as that fors;,=0 in Eg. (8). A numerical estimation of

(Inky) is carried out with 1®sarr_1ples ok, . Unlike the case b ki,,—1\dk

Sin=0, it is an increasing function af, as shown in Fig. 2. xf K al
Whenn>n,, y, has nonvanishing probability to exceed ( i i

kis1—1)a

yo.>c;. Following Bchme and Schwarz, a measwéor the b k,—1 dk,
sensitivity of the system to constant input can be defined as X (ky—1)—
ke )Pk
(ky—1)/a 1 1
maxy|
n (10) @ 3 T T T T
S=—.
[Sil 1 I M “ _
Since L '“ ’
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wla) =1 w ST
1
increases exponentially with an infinitely small input value g0
can create a finite output. The largest output gyak=ac, is -1r
due to the confinement of the nonlinearity of the map. The 2
sensitivitys of the system thus goes to infinity and is referred 25 2000 4000 6000 8000 10000
to assupersensitivity6]. "

An important question concerning the system is the time  F|G. 6. (a) Output of the system when only white noise is
needed for small input to produce a large output. We exampresent as inputh) Output of the system when constant sigpal
ine the timeN for a small inputp to produce for the firsttime =0.3s is present along with the noise. The parameters are
an outputsy,=c;. The distributionP(N) of N is the fol- =2.6,0=1x10"%. Noting the change of symmetrical property of
lowing probability the bursting pattern of the system.
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FIG. 7. (a) Degree of asymmetri 4, as a function of “signal-to-noise ratioR for differenta ando. (b) Bursting frequencyF as a
function of R for differenta and o. (b) shares the same legends(af. The results are obtained from observation during a period of time
T=2Xx10°.

where b=c,/p if i>n, and b=(a*'-1)/(a—1) if i application of the system as a detector, external noise is un-
<n,. However, to the best of our knowledge, a closed-formavoidable. The system now reads as
solution of the above integral for anly is not available.

In the following, we are going to carry out some simula- Yn+1=2Znf(Yn) +Sin*+€n, (12)

tions. We specifyc;=1 andc,=2 in these simulations. In \\here e denotes external noise. It is plausible to assume
Fig. 3, as an example, the output sequence is Shows;for hate has vanishing mean value and a Gaussian distribution
=1.0x10 " ata=2.6. The Qashed lines |nd|c_ate the switch oN(0,1), with a standard deviatiom. The behavior of the
on and off of the constant input. The output in the presencgystem in the presence of noise is quite different from the
of input is an intermittent process, similar to the result of thenpjse-free case, because bubbling occurs even without a sig-
chaotic bridge ir{6]. nal s,,. Very small external noise can also lead to large
In the next simulation, we estimate(N) for different  output of the system, as illustrated in Figagwith a=2.6
values ofa andp, as shown in Fig. 4. It is seen that the and c=1Xx10*. In this system witha<a., bursting be-
distributions peak at rather small values, and after the havior always means that there are some inputs to the sys-
peak, they decrease exponentially. The average {M)efor  tem, and the largest output will be independent of the inputs.
first putting outyy=c; is also evaluated as a function af The problem now becomes whether we can distinguish that
andp in Figs. 5a) and 8b), respectively. So, on average, the the input is a meanful signal or just noise, and moreover
closer thea to a. and the larger the inpys, the quicker the whether we can detect any significant signal among the white
system reaches a large output. noise environment. As will be shown in the following, this
The simulation results show that this system may be usedystem is quite promising for this task, because the sym-
as a detector for weak signal. However, the above discussiametrical property of the bursting behavior is very sensitive to
is only valid in a noise-free environment. In the practicalthe bias of the inputs.
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FIG. 8. (8) D,y Of short time observationiT =2000. (b) Normalized histograms oD ., for different R value. The histograms are
constructed with 50000 observations for e&kalue. The parameters ase=2.6, c=1x10"%,
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X1t . . _ . makes it possible to determine the noise level &)dand
@ thus to estimate the amplitude of the constant signal in an
observation.
To get a good estimation @ .5, andF, T should be large
enough. In practice, one may not expect a signal that stays
, ‘ . ‘ ‘ constant for so long a time. The teroonstant signais a
0 2000 4000 6000 8000 10000 concept relative to the time scale of the detector, and the
’ ‘ ’ ‘ time scale can be controlled in the implementation. In nu-
merical experiment of this dimensionless system, we can
simulate a shorter signalor a “slower” detectoj with
smallerT, e.g.,T=2000. In this caseD .5, has large fluctua-
] tions, as shown in Fig.(& whereD 4, of 20 realizations of
0 2000 4000 6000 8000 10000 the driving z, and white noises, of the system are plotted
n for eachR value. WherR is getting larger, more points co-
_ ) _ incide atD,s,=1. A good way to examine the fluctuation
FIG. 9. (a) A weak sine wave embedded in the n0|§®. The behavior is to construct a hlstogram Bfasyv as shown in
response of the detector to the inputs(af Fig. 8(b) for a=2.6,0=10"*. The results show that even
for quite short signal and lowR value, D ;5. has very high
This sensitivity is due to the odd symmetry of the map.probability nearD,=1. An implication of the results is that
An inspection of Fig. 6) reveals that the number of large several detectors can be used at the same time to detect and
bursts to positive and negative values is quite symmetric foconfirm a short and weak signal embedded in white noise.
inputs of white noise. When a small positive constant input As an example of a little more realistic input signal, we
Si,=p=0.3x10 * is present along with the noise, the sym- present the response of the system to the noisy input
metry is clearly broken, as seen in Fighp Note that the Asin(0.003) +e,, where the noise level is=1x10"* and
constant inpup is much smaller than the noise levelin  the amplitude of the sine wave &=0.3x10"*. Both the
this example. This result indicates that the symmetry of burstotal input and the output of the system are displayed in Fig.
is quite sensitive to the bias of the total inpsts+e, of the 9 The bursting feature reflects the weak wave among the
system. To characterize the symmetry breaking propertj€iS€ quite clearly.

quantitatively, we introduce the degree of asymmedry, In summary, we have shown that a kind of very simple
as driven symmetrical maps below the onset point of on-off

intermittency have two distinguishing features (0f being
stable at the invariant staie=0 and(ii) being sensitive to
:N+_N— (13) small input. In practice, the environment cannot be noise-
asy N,+N_’ free, and the systems exhibit bubbling behavior in the pres-
ence of noise. Another interesting and useful property of the
where N, (N_) is the number of large bursfy(=1) to  Systems is that the bursting pattern is symmetrical fqr vyhite
positive (negativé values during a period of observation Noise input, and the symmetry is broken when there is signal
time T. Because of the symmetry of the map and that of theMong the noise environment. The significance of the signal
white noise, one can expect thBt,,,~0 for white noise is manifested by the degree of asymmetry in the _burstlng
inputs. For positivelnegative constant inputs in the noise- pattern. These features make them promising candidates for

free case, it is clear thad,g,=1(—1). designing sensitive devices. o _
A comparison between Figs(@ and Gb) also shows that Although our study is based on numerical simulations of a
large bursts occur more frequently when constant input i€@PPing model, it should be noted that system response to

present with the noise. We define the bursting frequéhag sma!l inp_uts is governed by its linearized equation, and the
nonlinearity only serves to keep the system bounded. Many

long time properties shown above thus are universal in a

output

[N R RN O S
T T

|
IS

F= M (14) class of driven systems possessing odd symmetry. The fol-
T lowing can be advantages for such systems when considering
applications in sensitive devices.
We expect thaF increases with larger constant inguand (1) The sensitivity is maintained in a large range of pa-
larger noise levebr. rameter below the critical point. This avoids the difficulty of

A measure of the significance of a constant signal amongpcating parameter in a very small neighborhood of a bifur-
the noise can be the “signal-to-noise rati®=p/o. Inthe  cation point in a period-doubling system.
following, simulations are carried out to examine the depen- (2) The sensitivity of the system is, in principle, infinite.
dence ofD,s, and F on R for different noise levelo and  In a noise-free environment, an infinitesimal input signal can
system parametex The results shown in Fig. 7 are obtained produce a finite output. When noise is present, a weak signal
with T=2x10°. The result ofD,sy is very interesting: as a can also be manifested by the asymmetry in the bursting
function ofR, D,y is independent of the noise leweland is  pattern. The degree of asymmetry depends on the signifi-
not sensitive to parameter Whether a constant signal em- cance of the signal with respect to the noise. The sensitive
bedded in the noise environment can be detected dependehavior is universal for different forms of nonlinearity of
only on its significance with respect to the noise level. How-the systems, as well as for different form of driving signals.
ever,a and o have effect on the bursting frequenBy as  This is very useful because one can thus choose a system that
seen from Fig. ®). A combination of Figs. @ and %b) is simple and easy to implement in practice.
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It could be meaningful to consider implementation of lower level of inputs. There seems to be a frequency cutoff
such simple systems and explore their application in smalssociated with the input levels and the relaxation time of the
signal detection. Since in applications, pivotal role is playedsystems. Above the cutoff, the small signal in the noise can
by the symmetry properties of the system, one should takB0 longer be manifested by clear asymmetry in the bursting
care to maintain such properties. In order to avoid perturbaPattern. Such limits should be taken into consideration in

tions which may make the system appreciably asymmetric?pplications'

one should avoid using different parameters for the two sym-  This work was supported in part by research Grant No.
metrical parts of the systems. Also, one should note that IRP960689 at the National University of Singapore. C.Z. was
takes longer for the system to produce static output states faupported by NSTB.
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