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Simple driven maps as sensitive devices
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Sensitive dependence of nonlinear systems on initial conditions or parameters can be useful in applications.
We propose in this paper that bubbling behavior in simple driven symmetrical maps may be used as a working
principle of sensitive devices. The system is stable when there is no input and displays bursting behavior when
there is small input. The symmetrical property of the bursting pattern is very sensitive to the bias of the noisy
inputs, which makes the system promising for detecting weak signals among noisy environment.
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A common property of many nonlinear systems is th
sensitive dependence on initial conditions or paramet
This effect can be useful in applications. For example,
sensitivity of a chaotic system can be used to control its s
to unstable periodic orbits embedded in it@1#, in targeting the
state of the system to desired points in the state space@2#, to
control the system to follow a desired goal dynamics in or
to synchronize with another system@3# or to allow a message
being encoded in a chaotic series for the purpose of se
communication@4#, only by small modifications of the pa
rameters or state of the chaotic system. The capability
achieving quite different behavior by applying only sm
perturbations improves greatly the flexibility of a system
be used in various applications.

By definition, sensitivity is referred to as the growth
small perturbations to the system. So, naively, sensitivity
nonlinear systems can be used to design sensor dev
Many systems possess a period-doubling bifurcation w
some parameter is varied. Near the onset of a per
doubling bifurcation, any dynamical system can be used
amplify perturbations near half the fundamental frequen
@5#. One disadvantage associated with the application of s
parameter sensitivity for sensor device purpose is that
control parameter of the system must be located extrem
close to the critical value of the bifurcation.

Recently, Bo¨hme and Schwarz proposed to use two ide
tical chaotic systems to construct sensitive devices@6#. In
particular, they employed the following symmetrical
coupled chaotic systems:

ẋ5 f ~x!2k~x2y!1sin , ~1!

ẏ5 f ~y!1k~x2y!2sin , ~2!

named chaotic bridge as a sensor device.sin represents a
constant input to be sensed. The coupling gaink is chosen
near the thresholdkc of synchronization, so that forsin50,
the coupled systems are in synchronization state, and
outputsout5uux2yuu50; while for sinÞ0, the symmetry of
the chaotic bridge is broken, and it may have a large ou
at some moment. Since the synchronization manifold
transversely stable forsin50, there must exist local instabili
ties in the system in order to obtain amplification of sm
PRE 591063-651X/99/59~4!/4007~6!/$15.00
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perturbations. As pointed out by the authors in Ref.@6#, in
the neighborhood of the boundarykc of synchronization, one
can expect the highest sensitivity of the system.

We would like to highlight the connection of the workin
principle of the above device to the phenomenon ofattractor
bubblingstudied recently@7–10#. Whenk is just beyond the
thresholdkc , the synchronization manifold is transverse
stable. However, there still exist some invariant sets, suc
the unstable periodic orbits embedded in the synchroniza
manifold, which are transversely unstable. As a conseque
small perturbations in the systems which destroy its synch
nization manifold will result in large intermittent bursts from
the synchronization manifold, no matter how small the p
turbations are@8#. This is the origin of the sensitivity of the
above system. The difficulties of application of the syste
for sensor devices lie in practical implementations. Just l
additive perturbations, any parameter mismatches betw
the systems can also lead to intermittent bursts. Param
mismatches are inevitable in experiment implementatio
This is the reason that intermittent desynchronization w
observed beyond the threshold of synchronization in m
experiments of synchronization between well matched e
trical circuits@7–10#. This effect imposes great difficulties i
the experimental implementation of the above sensor
vices, because inevitable parameter mismatches lead to
output even forsin50. The above devices can work only
the two systems areideally identical, which is extremely
difficult to realize. On the other hand, small external no
can also result in large bursts whenSin50, which makes it
very difficult to tell a signal from noise which is alway
present in the practical environment.

To avoid the above difficulties, we propose in the follow
ing to use simple driven systems as sensor devices. Attra
bubbling and on-off intermittency@11,12# are common be-
haviors that occur in coupled nonlinear systems which p
sess an invariant manifold. They can be achieved in v
simple parametrically driven one-dimensional maps@12#

yn115znf ~yn!, ~3!

wheref (0)50, ] f (y)/]yu0Þ0, andzn5axn.0 is a random
or chaotic driving signal with density functionrz anda is a
4007 ©1999 The American Physical Society
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parameter. For the purpose of the application of the syst
as sensitive devices, we require the maps to have odd s
metry, i.e.,f (2y)52 f (y).

The stability of the invariant manifoldy50 is governed
by the linear equation

yn115znyn , ~4!

which describes the evolution of small perturbations tra
verse to the invariant liney50. Here] f (y)/]yu0 is absorbed
into the parametera. The transverse Lyapunov exponentl of
the invariant manifold defined as

l5 lim
N→`

1

N (
n51

N

ln zn5^ ln z& ~5!

determines the stability of the invariant manifold. The cri
cal pointac at whichl50 is the onset point of on-off inter
mittency@12#. For zn being a uniform random driving signa
on (0,a), rz51/a, and ^ ln z&5ln a2150 givesac5e. Just
above the onset point,a>ac , the random driven system dis
plays universal features of on-off intermittency behavi
which are unaffected by the form of the confining nonline
ity @12#. The nonlinearity of the system serves to bound
reject the dynamics back towards small values ofy after
bursts. Fora belowac , the invariant manifoldy50 is stable,
but the stability is quite weak ifa is nearac . Attractor bub-
bling occurs in the system when there are inputs of per
bations such as noise.

For a sensitive device, it should be stable when there is
input, and is expected to produce large outputs when th

FIG. 1. The piecewise linear mapf (y). Here c151 and c2

52.

FIG. 2. ^ ln kn&, the average order ofkn , as a function ofn. It
decreases linearly for the case without input~plot a) and increases
for the case with input~plot b).
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are small perturbations. In this paper, we are not conside
the on-off intermittency behavior witha>ac . For the pur-
pose of sensor purpose, we employ the bubbling beha
with a,ac . The sensor system reads as

yn115znf ~yn!1sin , ~6!

and sout5y. When there is no input, i.e.,sin50, y50 is a
stable solution, and the outputsout50. Since the critical pa-
rameterac and the evolution of small perturbations are ind
pendent of the form of the nonlinearity, one can choos
map which is simple for implementation. For example, w
employ a piecewise linear map

f ~y!55
c1

c2
~2c12c22y!, y,2c1 ,

y, uyu<c1 ,

c1

c2
~c11c22y!, y.c1 ,

~7!

wherec1 andc2 are two parameters, as shown in Fig. 1.
If there is no input,sin50, staring from a small initial

condition y05p, we haveyn5zn21zn22•••z0p5knp. The
average order of the factorkn , which can be defined a
^ ln kn&, decreases linearly withn as

^ ln kn&5n^ ln z&5n~ ln a21!. ~8!

FIG. 3. An illustration of the output process of the sensiti
system ata52.6. The constant input isp51024, and is switched
on and off alternately for every 500 iterations, as shown by
dashed lines.

FIG. 4. Numerically evaluated distribution ofN. The parameters
of the plots are:~a! a52.5,p51023, ~b! a52.5,p51024, and~c!
a52.6, p51024.
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FIG. 5. ~a! Average value ofN as a function ofa with p51023, and~b! as a function ofp with a52.6.
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Now, suppose there is a small constant inputsin5p, starting
from y050, the evolution of the output reads as

y15~z011!p5k1p,

y25~z1z01z111!p5k2p,

•••

yn5~zn21•••z01•••1zn22zn211zn2111!p5knp,
~9!

if

max~ uynu!5upu~11a1•••an!5upu
an1121

a21
<c1 ,

or

n<nc5 int$ ln@c1~a21!/upu11#/ ln a%21,

where int@x# is the interger part of a real numberx. The
average order ofkn , ^ ln kn&, cannot be obtained analyticall
as that forsin50 in Eq. ~8!. A numerical estimation of
^ ln kn& is carried out with 106 samples ofkn . Unlike the case
sin50, it is an increasing function ofn, as shown in Fig. 2.

Whenn.nc , yn has nonvanishing probability to excee
yn.c1 . Following Böhme and Schwarz, a measures for the
sensitivity of the system to constant input can be defined

s5

max
n

uynu

usinu
. ~10!

Since

max~kn!5
an1121

a21

increases exponentially withn, an infinitely small input value
can create a finite output. The largest output maxnuynu5ac1 is
due to the confinement of the nonlinearity of the map. T
sensitivitys of the system thus goes to infinity and is referr
to assupersensitivity@6#.

An important question concerning the system is the ti
needed for small input to produce a large output. We exa
ine the timeN for a small inputp to produce for the first time
an outputsout>c1 . The distributionP(N) of N is the fol-
lowing probability
s

e

e
-

P~N!5Prob~ù i 51
N21yi,c1ùyN>c1!. ~11!

By defining the eventEN5ù i 51
N yi,c1 and the correspond

ing probabilityLN5Prob(EN), it follows that

P~N!5LN2LN21 ,

which is a function of botha andp. In principle,LN can be
evaluated by the joint densityF(K) of k1 ,k2 , . . . ,kN ,
namely,

F~K !5
r~z0!r~z1!•••r~zN21!

uJu

5

r~k121!rS k221

k1
D •••rS kN21

kN21
D

k1k2•••kN21
,

whereJ is the Jacobian of the transformation betweenki ’s
andzi ’s defined in Eq.~9!. Specifically, one has

LN5E
1

b

dkNE
~kN21!/a

b

rS kN21

kN21
DdkN21

kN21
•••

3E
~ki 1121!/a

b

rS ki 1121

ki
Ddki

ki
•••

3E
~k221!/a

b

rS k221

k1
D r~k121!

dk1

k1

FIG. 6. ~a! Output of the system when only white noise
present as input.~b! Output of the system when constant signalp
50.3s is present along with the noise. The parameters area
52.6,s5131024. Noting the change of symmetrical property o
the bursting pattern of the system.
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FIG. 7. ~a! Degree of asymmetryDasy as a function of ‘‘signal-to-noise ratio’’R for different a ands. ~b! Bursting frequencyF as a
function of R for different a ands. ~b! shares the same legends of~a!. The results are obtained from observation during a period of t
T523106.
rm

a-

r
ch
nc
h

e

e

se
si
a

un-

me
tion

the
sig-

ge

sys-
uts.
that
ver
hite
is
m-
to
where b5c1 /p if i .nc and b5(ai 1121)/(a21) if i
<nc . However, to the best of our knowledge, a closed-fo
solution of the above integral for anyN is not available.

In the following, we are going to carry out some simul
tions. We specifyc151 andc252 in these simulations. In
Fig. 3, as an example, the output sequence is shown fosin

51.031024 at a52.6. The dashed lines indicate the swit
on and off of the constant input. The output in the prese
of input is an intermittent process, similar to the result of t
chaotic bridge in@6#.

In the next simulation, we estimateP(N) for different
values ofa and p, as shown in Fig. 4. It is seen that th
distributions peak at rather smallN values, and after the
peak, they decrease exponentially. The average time^N& for
first putting outyN>c1 is also evaluated as a function ofa
andp in Figs. 5~a! and 5~b!, respectively. So, on average, th
closer thea to ac and the larger the inputp, the quicker the
system reaches a large output.

The simulation results show that this system may be u
as a detector for weak signal. However, the above discus
is only valid in a noise-free environment. In the practic
e
e

d
on
l

application of the system as a detector, external noise is
avoidable. The system now reads as

yn115znf ~yn!1sin1en , ~12!

where en denotes external noise. It is plausible to assu
thaten has vanishing mean value and a Gaussian distribu
sN(0,1), with a standard deviations. The behavior of the
system in the presence of noise is quite different from
noise-free case, because bubbling occurs even without a
nal sin . Very small external noise can also lead to lar
output of the system, as illustrated in Fig. 6~a! with a52.6
and s5131024. In this system witha,ac , bursting be-
havior always means that there are some inputs to the
tem, and the largest output will be independent of the inp
The problem now becomes whether we can distinguish
the input is a meanful signal or just noise, and moreo
whether we can detect any significant signal among the w
noise environment. As will be shown in the following, th
system is quite promising for this task, because the sy
metrical property of the bursting behavior is very sensitive
the bias of the inputs.
FIG. 8. ~a! Dasy of short time observation,T52000. ~b! Normalized histograms ofDasy for different R value. The histograms are
constructed with 50000 observations for eachR value. The parameters area52.6, s5131024.
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This sensitivity is due to the odd symmetry of the ma
An inspection of Fig. 6~a! reveals that the number of larg
bursts to positive and negative values is quite symmetric
inputs of white noise. When a small positive constant in
sin5p50.331024 is present along with the noise, the sym
metry is clearly broken, as seen in Fig. 6~b!. Note that the
constant inputp is much smaller than the noise levels in
this example. This result indicates that the symmetry of bu
is quite sensitive to the bias of the total inputssin1en of the
system. To characterize the symmetry breaking prop
quantitatively, we introduce the degree of asymmetryDasy
as

Dasy5
N12N2

N11N2
, ~13!

where N1 (N2) is the number of large burst (uyu>1) to
positive ~negative! values during a period of observatio
time T. Because of the symmetry of the map and that of
white noise, one can expect thatDasy'0 for white noise
inputs. For positive~negative! constant inputs in the noise
free case, it is clear thatDasy51(21).

A comparison between Figs. 6~a! and 6~b! also shows that
large bursts occur more frequently when constant inpu
present with the noise. We define the bursting frequencyF as

F5
N11N2

T
. ~14!

We expect thatF increases with larger constant inputp and
larger noise levels.

A measure of the significance of a constant signal am
the noise can be the ‘‘signal-to-noise ratio’’R5p/s. In the
following, simulations are carried out to examine the dep
dence ofDasy and F on R for different noise levels and
system parametera. The results shown in Fig. 7 are obtaine
with T523106. The result ofDasy is very interesting: as a
function ofR, Dasy is independent of the noise levels and is
not sensitive to parametera. Whether a constant signal em
bedded in the noise environment can be detected dep
only on its significance with respect to the noise level. Ho
ever, a and s have effect on the bursting frequencyF, as
seen from Fig. 7~b!. A combination of Figs. 7~a! and 7~b!

FIG. 9. ~a! A weak sine wave embedded in the noise.~b! The
response of the detector to the inputs of~a!.
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makes it possible to determine the noise level andR, and
thus to estimate the amplitude of the constant signal in
observation.

To get a good estimation ofDasy andF, T should be large
enough. In practice, one may not expect a signal that s
constant for so long a time. The termconstant signalis a
concept relative to the time scale of the detector, and
time scale can be controlled in the implementation. In n
merical experiment of this dimensionless system, we
simulate a shorter signal~or a ‘‘slower’’ detector! with
smallerT, e.g.,T52000. In this case,Dasy has large fluctua-
tions, as shown in Fig. 8~a! whereDasy of 20 realizations of
the driving zn and white noiseen of the system are plotted
for eachR value. WhenR is getting larger, more points co
incide at Dasy51. A good way to examine the fluctuatio
behavior is to construct a histogram ofDasy, as shown in
Fig. 8~b! for a52.6, s51024. The results show that eve
for quite short signal and lowR value,Dasy has very high
probability nearDs51. An implication of the results is tha
several detectors can be used at the same time to detec
confirm a short and weak signal embedded in white nois

As an example of a little more realistic input signal, w
present the response of the system to the noisy in
Asin(0.003n)1en , where the noise level iss5131024 and
the amplitude of the sine wave isA50.331024. Both the
total input and the output of the system are displayed in F
9. The bursting feature reflects the weak wave among
noise quite clearly.

In summary, we have shown that a kind of very simp
driven symmetrical maps below the onset point of on-
intermittency have two distinguishing features of~i! being
stable at the invariant statey50 and~ii ! being sensitive to
small input. In practice, the environment cannot be noi
free, and the systems exhibit bubbling behavior in the pr
ence of noise. Another interesting and useful property of
systems is that the bursting pattern is symmetrical for wh
noise input, and the symmetry is broken when there is sig
among the noise environment. The significance of the sig
is manifested by the degree of asymmetry in the burst
pattern. These features make them promising candidate
designing sensitive devices.

Although our study is based on numerical simulations o
mapping model, it should be noted that system respons
small inputs is governed by its linearized equation, and
nonlinearity only serves to keep the system bounded. M
long time properties shown above thus are universal i
class of driven systems possessing odd symmetry. The
lowing can be advantages for such systems when conside
applications in sensitive devices.

~1! The sensitivity is maintained in a large range of p
rameter below the critical point. This avoids the difficulty
locating parameter in a very small neighborhood of a bif
cation point in a period-doubling system.

~2! The sensitivity of the system is, in principle, infinite
In a noise-free environment, an infinitesimal input signal c
produce a finite output. When noise is present, a weak sig
can also be manifested by the asymmetry in the burs
pattern. The degree of asymmetry depends on the sig
cance of the signal with respect to the noise. The sensi
behavior is universal for different forms of nonlinearity o
the systems, as well as for different form of driving signa
This is very useful because one can thus choose a system
is simple and easy to implement in practice.
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It could be meaningful to consider implementation
such simple systems and explore their application in sm
signal detection. Since in applications, pivotal role is play
by the symmetry properties of the system, one should t
care to maintain such properties. In order to avoid pertur
tions which may make the system appreciably asymme
one should avoid using different parameters for the two sy
metrical parts of the systems. Also, one should note tha
takes longer for the system to produce static output state
ett

z

ll
d
e

a-
c,
-
it
or

lower level of inputs. There seems to be a frequency cu
associated with the input levels and the relaxation time of
systems. Above the cutoff, the small signal in the noise
no longer be manifested by clear asymmetry in the burs
pattern. Such limits should be taken into consideration
applications.
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